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I. ABSTRACT

Fifty-eight materials including ten elements have been tested in I

this quarter for corrosion resistance and activity as oxygen electrodes in

2 N KOH at 75°C. The technique used was to measure the current-potential

curve with rotated compact electrodes completely immersed in KOH solu-

tions saturated either with nitrogen or oxygen.

The materials tested were selected according to two criteria intro-

duced in the first quarterly report. In one approach (continuum approach),

the major factor considered was the structure of the material such as an

intermetallic compound, while in the other approach (atomistic approach),

combinations of elements with ,established properties for corrosion and

activity were selected.

Of the tested elements, Pd shows very good 0 2 activity, only

slightly inferior to Pt (around 75 my more polarization in the non-steady

state i (E)-curve). Graphite shows relatively good intrinsic activity (with

0 2 current at E = 800 my); and iron with O2-reduction at E = 600 mv

is surprisingly more active than nickel.

The experiments with the intermetallic compounds show that under

conditions of O2-reduction, the fundamental factor determining the activity

is the atomic factor. Thus, compounds of Pt and Au show an i (E)-curve

for O2-reduction which is s'imilar (but with "diluted" activity) to those of

pure Pt and Au. In some cases such as TaPt 2 ; the activity of the inter-

metallic compound is very close to the activity of pure Pt.

The solid solution "Co2Ni" shows a very interesting behavior which

confirms the catalytic activity of Co 3+ containing oxide and the poor activity

of the bivalent oxide.

Of the interstitials tested, carbides show some activity, especially

an iron carbide (Hagg carbide Fe2C ) prepared by surface carburization

(with CO) of an iron rod at several temperatures not exceeding 300°C;

activity for O2-reduction which, although lower than that of Pt, Pd, Ag

and Au, is considerably better than the activity of Fe.

Metallographic characterization of eighteen samples of the prepared

intermetallic compounds shows that in those cases where a simple phase was

expected, a predominant phase with very little or no second phase was ob-

tained.
D

-1-



m

II. INTRODUCTION

In order to improve' the over-all efficiency of hydrogen-oxygen

fuel cells, improvements in the performance of the oxygen electrode are

needed, since the high polarization of this electrode is the main source of

inefficiency.

The approach followed in this work in order to obtain better 0 2 -

electrodes is to investigate the catalytic properties for O2-reduction and

the corrosion resistance to the alkali electrolyte of a large number of com-

pounds selected according to structural or atomic considerations. The

criteria for catalyst selection according to structural factors have been

discussed in detail in the first quarterly report. Selections are made from

intermetallic compounds of the T - T - type (i. e. of two transition metals)

with the objective of testing the possibility that the continuum properties

(electronic properties) of the crystal may have decisive influence on its

catalytic activity even if the elements (or one of them) are not catalytically

active. Similarly, compounds of the T - B - type (i. e. one transition

metal and an element on the right side of the periodic table) with special

emphasis on interstitial/substitutional compounds such as borides, car-

bides, nitrides, oxides, and silicides are being tested.

Since, under the conditions of electrolyte and potential, the surface

of the catalyst will usually be a mixed oxide, oxides are of especial interest,

and attention will be given to them in a later phase of this work.

To select a catalyst acdording to atomistic considerations, elements

with favorable catalytic activity and/or corrosion resistance, as estab-

lished empirically in published research or during the course of the present

work, will be combined in order to give a composite material of better over-

all performance. _"

I" ' 't
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III. EXPERIMENTAL

In order to test a large number of mathrials in the least ambiguous
J

manner possible, we have chosen to test in the first phase of the program,

compact samples immersed and rotated in 2 N KOH solution saturated

with oxygen.

The test procedure was described in the first quarterly report; in

the following only the essentials of the method and thevariations introduced

since the last report will be described.

A. Preparation of Samples of Intermetallic Compounds

The interrnetallic compounds of the T - T type and the solid

solutions tested were prepared by melting in an arc furnace under an argon

atmosphere mixtures of carefully weighed correct proportions of the ele-

mentary components., In order to eliminate oxygen in the furnace, Ti

powder, which acts as an oxygen getter, was melted prior to the melting

of the sample.

The resulting samples are buttons of approximately I cm diameter.

Compounds which are known (from the phase diagram) to form congruently

were tested without any subsequent heat treatment, while materials which

are formed through a peritectic reaction were annealed in a vacuum furnace

at a temperature .-...1.-..-,-.-.__.-. "*'" "_""-" '_ ..... " -,=L ..v =,,_,_=o_u _,,m t,,_ v,*=o_ u_as_,', xn such a way ._n. .... 1.

ing occurs, while, at the same time, fast homogenization at the practical

time periods used is achieved. The cases where annealing was used are

reported in the text with the temperature and time used.

A large portion of the compounds compared were analyzed metallo-

graphically and the results are given under "Characterization" (section IV F).

B. Intermetallic/Substitutional Compounds of Refractory Elements

The following compounds have been ordered and received from

Cerac, Inc. as hot,pressed truncated cones of 95% density. This geometry

has been selecied as a convenience in the electrode mounting, as described

below.

-3-
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1.

.

.

4.

Borides

CrB

CrB 2 ,

Cr5B 3

MoB ,

MoB2

Carbides

B4C

Cr3C 2

HfC

Nitrides

NbB

NbB 2

SiB 6

•SiB 4

TaB

Mo2C

. NbC

,TaC

Cr2N NbN

HfN TaN

TaB 2

TiB 2

wB

W2B 5

TiC

VC

ZrC

TiN

VN

W2B

VB 2

ZrB 2

( 94WC- 6Co)

( 80 WC - 20Co)

ZrN

Silicides .
i

CrSi 2 MoSi 2

Cr3Si . 'NbSi2

CoSi 2 TaSi 2

MnSi 2 Ta5Si 3

TiSi 2

Ti5Si 3

WSi 2

VSi 2 '

ZrSi 2

(Si-B6Si)

C. Preparation of Interstitials of Metal of the VIII-Group Metals

Work has been started on preparing carbides, nitrides, and .

carbonitrides of Fe, Co and Ni, These interstitialsare compounds with

interesting catalytical properties, especially with respect to the Fischer-

Tropsch processes (1,2). In general, in preparing these compounds, care-

1. J. F. Schultz, L. J. H. Hofer, E. M. Cohn,
Anderson, Bureau of Mines Bulletin No. 578.

2. J.F. Schultz, L. J. H. Hofer, K. C. Stein,
Bureau of Mines Bulletin No. 612.

-4-
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ful control of the temperature and gas composition has to be exerted in

order to remain in the range of thermodynamic stability. In order to pre-

pare the compounds, three furnace tubes equipped to work under CO and

NH 3 atmospheres have been constructed. The operation of these furnaces

will be described in subsequent reports when data of the prepared materials

are discussed. The preparation of a sample of Fe2C (Hagg carbide) is

briefly described below. Four iron carbides have been described in the

literature (1-3) i. e, "FeC" the "hexagonal iron carbide" of contro-

versial formulation (Fe2C or Fe3C ) (both discovered in used Fischer,

Tropsch catalysts), Hagg carbide (Fe2C), and cementite (Fe3C). The three

last carbides can be obtained separately under action of CO on finely

divided iron by regulating the temperature. In that way, at temperatures

under 170"C hexagonal close packed carbide is obtained; between T = 170°C

and 300°C, Hagg carbides are obtained; and at temperatures higher than

3000C, cementite is obtained. If hydrogen is used previous to the carburiza-

r.ion (CO treatment) - or still better, simultaneously with the carburization -

contaminations by oxygen are eliminated.

In the first attempts to prepare Fe2C , carbon monoxide was passed

over a pure iron sponge (99. 999%) at temperatures of 150 ° - 270°C. In the

first run, pure iron was used without pretreatment. Carbon monoxide was

passed c_.,er the sample for 27 hours ..... "_'- -" ...... ,....a,._.u_ux_ig to the fo_,owmg temperature

schedule recommended in the literature:

150oC, 4 hrs ; 200°C, 15 hrs ; 250°C, 4 hrs ; and 275°C ,- 4 hrs.

X-ray analysis indicated mostly iron and magnetite.

In the second.run, two pure iron samples, consisting of a compact

99. 999_ iron cylinder, mounted in an electrode assembly to be describeh

later, and pure iron spqnge (99.999%) were carburized according to the

following schedule: _

Reduction: H 2 - 325°C, 15 hrs ; carburization: CO, 170°C, 8hrs;

200°C, 15hrs ;250°C, 4hrs ;and300°C, 4hrs.

3. A195, 41K. J. Jack, Proc. Roy. Soc. (London)A195, 34 (1948); ibid
(1948), and ibid A195, 56 (1948).
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After this treatment X-ray analysis of the powder showed strong evidence

of carbide, but still with too large proportions of unreacted iron and

magnetite. The preliminary results of the electrochemical test for O 2-

reduction activity •will be described later. Further preparations with new

furnaces and mixtures of hydrogen and carbon monoxide are underway. '

D. Electrode' Assemb_ly

In the previous quarterly report, a description was given of how

the button obtained from the argon arc furnace is cut with two parallel faces

and mounted in "Koldmount" to give a "rotating disc" ,with a face exposed

to the electrolyte, while theother face is used to make contact against a

•spring placed between this face and an iron rod axis externally insulated

with Teflon. The whole assembly is rotated at 600 rpm.

In order to mount the interstitials and substitutionals of the refrac-'

•tory metals obtained from Cerac, the samples in the form of truncated

cones were mounted in "Koldmount" so as to expose the short face to the

electrolyte. Electrical contact with the screw was made to the base of the

cone. Care was taken to avoid detaching the electrode material from the

surrounding "Koldmount" when applying force to the spring (see Fig. la).

The ductile materials were run usin_ a demountable electrode
assembly described by Stern and Malcrides (4) and shown in Fig. lb. In •

this assembly, the tapped and threaded steel rod is inserted through a

Teflon washer and screwed to the sample. A heavy-walled glass tube

ground at the lower end is made to exert pressure on the Teflon gasket

when a nut at the top end of the steel rod is tightened against the glass tube.

By grinding the glass tube and machining the low part of the Teflon washer

to a sharp edge, a liquid-tight seal at the glass-Teflon and Teflon-sample

junctions can be achieved* As usual, this electrode assembly was rotated

by a Sargent synchronous motor at 600 rpm. The advantage of such an

arrangement is that it eliminates the uncertainty of the effect of "Koldmount"

on the measured activity curves (a minor disadvantage is that the limiting

current cannot be described in a simple manner, e.g. by the Levich ex-

pression for a rotating disc). From the comparison of the measurement

with elements of known relative activity for O2-reduction such as Pt, Ag_

4. M. Stern and A. C. Makrides, J. Electrochem. Soc. 107, 782 (1960).

-6-
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Au, and Ni with Koldmount and from experiments (to be described later)

made with Koldmount and withthe Teflon washer arrangement on the same

material (Ni), it can t_e concluded that this material is satisfactory for our

semiquantitative screening; for more complete studies, the Teflon arrange-

ment is preferred when possible. The tests described in the present re-

port were made using the "Koldmount" assembly (Fig. la) if nothing else

is stated.

E. Electrochemical Test of Compact Samples

The test of electrochemical activity for O2-reduction and the

corrosion resistance to the electrolyte as a function of potential using the

rotating disc arrangement, was described in the first quarterly report.

• The corrosion resistance was measured by obtaining the i (E)-curve under

N 2 , while the activity for O2-reduction was estimated from the i 0E)-

curve taking in oxygen saturated electrode; The i (E)-curves were ob-

tained by sweeping the potential linearly with time at a rate of 50 my/min.

During the reporting period the testing procedure has been slightly changed

in order to improve the meaning of the measurements. In all the tests the

i 0E)-curves (with N 2 or O 2 ) were started at potentials higher than

E = 0.9 v and lower than E = .1.22 v (depending on the potential at which

corrosion or a transpassive region start) and the potential was decreased

to E = 0 , at which potentialthe sweep was reversed again and allowed to

proceed until the starting,potential was reached. After the nitrogen run, a

short i (t)E-curve (15 min run) at 900 - 1000 mv was taken in order to as-

certain if the corrosion current showed any decrease with tirrle. Prior to

the O2-experiment, the electrode was usually repolished in order to start

with the same surface state as during the N2-curve. The capacity measure-

ments using the fast triangular sweep, described in Appendix B of the first

quarterly report, was made 0uring the i 0E)-curve at three potentials as ,

long as no sizable Faradaic current existed at those potentials.

The potential of the hydrogen-evolving electrode was measured

frequently, before and after tests, against a reversible hydrogen electrode

in the same solution (under N 2 or 02). In all cases, the reference elec-

trode was 20 - 22 mv more negative than the reversible hydrogen electrode.

The potential used in the graphs is referred to the hydrogen evolving elec-

trode (or dynamic hydrogen electrode (DHE)), i.e. has not been corrected

for the 20 mv.

" 8 -
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During this period, two cells have been put in use sharing the same

electronic and electrical instrumentation. One cell is made ready for a

run (i. e. mount the electrode, heat and saturate the solution with N 2 or

with O2 ) while measurements on the other cell are underway.

During the measurements, it was found that some of the i (E)-curves

given in the first quarterly report may have been falsified by leakage of

electrolyte between sample and "Koldmount". Where doubt existed, the

curves have been rerun and the results are given in the present report.

° -9-



IV. RESULTS

A. i (E)-curves of Pure Elements

Graphite (Fig. 2.): Graphite obtained with a compact graphite ,,

electrode mounted in "Koldmount" as shown in Fig. la shows sizable capa- .

city for the O2-reduction starting at E = 0. 8 volts. This confirms the

intrinsic activity of carbon to reduce oxygen reversibly according to the

Berl reaction:

02 + H20 + 2 e- --, O2H- + OH- (E o = 0. 68).

The potential is kept more positive than the E o by the diffusion away from

the electrode of the formed O2H-. The formation of O2H- during the

O2-reduction is confirmed by the unusually low limiting current density

and the indication of a second current step at potentials below E = 200 my.

The fact that graphite shows activity (even if the capacity is somehow high

C = 410 uf/cm 2) under the experimental conditions selected is a re-

assurance for the use of this screening technique, since activity of porous

non-activated carbon electrodes has long been known.

Titanium (Fig. 3): The corrosion rate of titanium is moderate

and independent of potential. Activity for O2-reduction is negligible at

potentials higher than E = 300 mv, but O2-reduction at diffusion limited

current can be obtained below this potential.

Chromium (Fig. 4): The corrosion rate of chromium becomes

very high above a potential of 950 millivolts; below this value, the corrosion

is small. Activity for O2-reduction is small at potentials less than 200

millivolts, and is negli_;ible at'higher potentials.

Iron (Fig. 5): Under the conditions selected, iron shows a

small corrosion peak at E = 75 mv with passivation at potentials higher

than E = 200 my, The activity for O2-reduction, although lower than

that of Pt, Pd, Ag, Au and graphite, is remarkably high, even higher

than Ni which is used as O2-catalyst at higher temperatures. It will be

worthwhile to investigate this point further to define exactly the stability

of the electrode as a function of KOH concentration, potential, and tern-

1
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perature, and the specific catalytic activity of iron oxide such as magnetite,

etc., in order to determine if, •under any circumstances, Fe is a con-

venient catalyst, either by itself or in combination With other material. A

partial answer to this question will be given when discussing the behavior.

of Fe2C.

Cobalt (F_g, 6): Cobalt displayed extreme corrosion over the

entire potential range, even after passivation. In the i (E)-curve obtained

with increasing potentials, two peaks at E Z 200 mv and at E ___ 1000 mv

are observed which probably correspond to the oxidation of Co to CoO and

to the oxidation of CoO to Co203 , respectively. The interpretation of

the corrosion peak observed at E _ 600 mv in the i (E)-curve obtained

with negative potentials is difficult with the available information.

Nickel (Fig. 7a): As expected, the sample underwent no ob-

servable corrosion. Activity for O2-reduction is low, especially in the

i (E)-curve obtained with decreasing potentials, i.e. with oxidized electrode.

When reversing the potential after reaching E = 0 mv, a strong hysteresis

with increased activity is observed which can be interpreted as due to the

partial reduction of the oxide at potentials lower than E = 230 mv (i. e.

the standard potential of the reaction Ni + 2 OH- _ NiO + H20 + 2 e)

and to the slow formation at potentials higher than E = 230 mv in the

i 0E)-curve with increasing potentials. The curve of Fig. 7b shows similar

behavior when the electrode assembly was the same as that of Fig. lb,

(while for Fig. 7a the arrangement shown in Fig. lawas used). The some-

what higher activity found in this case can be attributed at the moment to a

different extent of surface oxidation or to a secondary poisoning effect by

the "Koldmount". (Note. als° the change of the ma/cm 2 - scale due to

change of geometric surface.) Since the NiO formed electrochemically

under the present circumstances is an insulator, measurements with samples

pre-oxidized with conductive NiO obtained by Si-doping, will be made.

This will allow us to compare the activity of this electrode with the other

data under exactly the same conditions.

tt

|
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Zirconium (Fig. 8): The corrosion is low and the activity for

O2-reduction negligible. .

Molybdenum (Fig. 9): The corrosion of this material is high

at potentials higher than E = 400 my, and no passivation at potentials

below E = 1000 mv is observed.

Palladium(Fig. 10): The N 2 corrosion curve shows a

cathodic current below 250 millivolts in the decreasing potential sweep.

This current is due to absorption of hydrogen in palladium:

_ m

Pd + H20 + e _ Pd-H + OH

When the sweep is reversed at 0 millivolts, the current becomes less

cathodic as the palladium absorption rate decreases. Finally, at about

200 millivolts, the current becomes anodic as the above equation reverses

itself. There is no apparent corrosion taking place.

There is good activity for O2-reduction below 950 millivolts, al- '

though lower than Pt (Fig. 4, first quarterly report). ......

The large hysteresis observed in the activation controlled region

indicates inhibition of the O2-reduction by "surface oxides". This hysteresis

is of the same direction aS that observed with Pt, but larger. Comparing

the i (E)-curves of Pt and Pd obtained with decreasing potentials, a

difference of approximately 75 my in favor of. Pt for current start (under

similar current scales) is observed. 1

The differences on the limiting currents obtained with Pd with in-

creasing or decreasing 'potentials can be attributed to hydrogen oxidation.

Hafnium (Fig. 11): As with zirconium, no corrosion or activity

for O2-reduction is observed.

B. Intermetallic Compounds

1. A3B Stoichiometry

Nb3Pt (/3 W type, A 15 structure, congruent) (Fig. 12):
k

This material corrodes strongly at any potential higher than the reversible

B

:q

,, ,_t
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hydrogen potential, and although it passivates at potentials higher than

E = 600 mv, the passive current is too high.

decay with time was found during 15 min at E

Mo3Pt (/3 W type, A 15 structure,

No appreciable current

= 900 mv.

II

forms through a peritectic

reaction and was heat treated at 1600°C for 40 hrs in vacuum) (Fig. 13):

Metallographic analysis showed that the tested material is not a true com-

pound, but a mixture of /3-phase (i. e. phase with /3 W structure, and

C phases (MoPt). 'This was explained subsequently by the fact that the

/3 W phase does not correspond to the Mo3Pt stoichioriaetry. The high

corrosion observed can be attributed to a combination of the corrosion of

MoPt ( C phase) and the corrosion of the /3--structure. Since the MoPt

phase (see Fig. 20) corrodes much less than this mixture, it can be reason-

ably concluded that the pure /3 -phase will corrode still more than ttie mix-

ture. Based on this conclusion, no attempt to prepare the /3 -phase has

been made.

Ni3A1 (AuCu 3 type, L12 structure; strictly a peritectic, but

virtually congruent; therefore no heat-treatment required) (Fig. 14): The

qualitative behavior for corrosion resistance and O2-activity is similar

to that of pure nickel. The low capacities measured indicate that there is

tno leac,hing of "_''"_''" _om _h_ sample.e-i J. L/_ J.J.J.J. JJ_.l A I.L

2. A2B Stoichiometry

Zr2Ni (CuS12 type; C 16 structure, congruent)(Fig. 15):

The results reported in the first quarterly report (Fig. 15a of the present

report) were suspected of being falsified by an electrolyte leak between

sample and "Koldmount"; repetition of the run (Fig. 15b) shows only negli-

gible corrosion and practicallyno activity for O2-reduction.

Ti2Cu (MoSi 2 type, C 11b structure, peritectic; heat-treated

in vacuum at 800°C for 160 hrs.) (Fig. 16): The compound displayed a

moderate but significant corrosion current in the potential range studied

and some O2-reduction current below E = 450 Inv.

r,, .#
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3. AB Stoichiometry

TiCo

at 800°C for 160 hrs) (Fig. 17): This material shows a moderate but sig-

nificant corrosion current across the entire potential range. The O 2-

reduction current is difficult to infer because of the corrosion current. It

seems, however, to be significant only at p6tdntials lower than E = 100 inv.
I

Over-all, the material is not useful as an O2-reduction catalyst.

NiA1 (CsCl type, B2 structure, congruent)(Fig. 18): This

material is interesting because, in spite of the large content of aluminum,

its corrosion rate is negligible from E = 0 to E = 1200 my. Activity for

O2-reduction is practically non-existant at potentials above 300 mv.

CoAl (CsC1 type, B2 structure, congruent)(Fig. 19): The

behavior of CoAl in respect to corrosion is very similar to the behavior of

Co. The differences in behavior between CoAl and NiA1 are similar to

the differences between the pure Ni and Co.

MoPt (hexagonal close-packed structure, congruent) (Fig. 20):

Considerable activity fo r O2-reduction, but excessive corrosion (although

not as high as the corrosion of the mixture of the _3 W structure and MoPt

(Fig. 13). The double layer capacity increases during the test due to roughen-

ing caused by corrosion. The difference between nitrogen and oxygen

i (E)-curves at potentials higher than 800 mv cannot be explained with the

available information.

4. AB 2 StoicMometry

("CsC1 type", B2 structure, peritectic, heat-treated'

TaV 2 (II) 0VlgCu 2 type, C 15 structure (Laves phases)

(Fig. 21): Tantalum ahcl vanadium form a solid solution which, when the

TaV 2 stoichiometry is selected, can be designated TaV 2 (I). This solid

solution can be ordered by heat treating at i100°C for 24 hrs to form the

TaV 2 (II) of C 15 structure. Samples of both materials (TaV 2 (I) and

TaV 2 (II)) have been Obtained and tested; both corrode vigorously under

N 2 and are not useful for O2-reduction catalysts. The differences between

the corrosion of TaV 2 (II) and TaV 2 (I) will be discussed when discussing

the TaV 2 {I), classified under "Solid Solulions".

14-
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HfW 2 (MgCu2,type, C15 structure (Laves phase); peritectic

heat-treated in vacuum at 1800°C for 26 hrs) (Fig. 22): This material

starts corroding at potentials more negative than the reversible hydrogen

electrode and the corrosion proceeds violently in the whole potential

scale studied (from E =. 0 hay to E = 1200 my).

TICr 2 (MgCu2-type, C15 structure, (Laves phases);
II

although this material is formed strictly by an ordei'ing reaction, it can be

virtually considered as congruent and therefore requires no heat-treatment)

(Fig. 23): This sample shows a large corrosion current at potentials

higher than 1000 mv. At potentials lower than 1000 my, there is reasonably

good stability, but the activity for O2-reduction is negligible. '

ZrW 2 (MgCu2-type, C15 structure (Laves pha se); peritectic,

heat-treated at 1400°C for 30 hours in vacuum) (Fig. 24): Sample under-

went high corrosion over the entire potential range studied.

ZrMo 2 (MgCu2-type, C15 structure (Laves phase);

peritectic, heat-treated at 1400°C for 30 hours in vacuum) (Fig. 25):

Sample underwent high corrosion over the entire potential range studied.

HfMo 2 (MgCu2-type, C15 structure (Laves phase);

peritectic, heat-treated at 1800°C for 26 hours in vacuum) (Fig. 26): The

sample showed an extremely large corrosion rate at potentials above 400 mv;

while below this value, the corrosion current dropped very rapidly to zero.

Since the material corrodes very sharply in the potential of region under

study, it can be discarded.
i !

TaCr 2 (This intermetallic is of the MgCu2-type, C 15 structure

at low temperatures and of the MgZn 2 type, C14 structure and congruent

at high temperature; since no heat-treatment followed, the sample was of

the high temperature Structure) (Fig. 27): Corrosion is very low below

E = 0.9 volt, but catastrophic at higher potentials. Activity for O2-reduction

is negligible.

- 15 -



TaFe 2 (MgZn-type, C14 structure, congruent)(Fig. 28):

Corrosion is appreciable at potentials in the range of interest; activity for

O2-reduction is negligible above E = 300 mv.

NbPt 2 (Orthorhombic close-packed structure, congruent)

(Fig. 29): NbPt 2 shows little or no corrosion current over the entire 1200 my

range. The O2-reduction activity is fairly large below 850 my; the real

surface is relatively high, C133 _f/cm 2, but not much higher than that

measured for Pt, C = 115 uf/cm 2 under similar conditions (see first

quarterly report, Fig. 4). In the Nb-Pt series of compounds, as the amount

of platinum increases, the corrosion decreases and the O2-reduction

current increases.

TaPt 2 (TaPt2-type, orthorhombic structure, congruent)

(Figs. 30a and b): Due to some interesting differences on corrosion between '

TaPt 2 and TaPt 3 reported in,he first quarterly report, measurements with

these compounds have been repeated. Fig. 30b shows exactly the same

behavior as described before (Fig. 30a)in spi_e of the some higher cap_city
(112 uf/cm 2 as compared to 24uf/cm2). In general, the activity of thia

compound is very similar to that of pure platinum.

5, AB 3 Stoichiometry

TiPt 3 (AuCu3-type, L12 structure, congruent) (Figs. 31a

and b): Results reporte d in the first quarterly report (see Fig. 31a of the

present report) were suspected of being caused by an electrolyte leak of the

electrode assembly; new measurements with a carefully mounted electrode

show (Fig. 31b) no appreciable corrosion and O2-activity similarto but

slightly lower than platinum. The lower current in the activation control

region in the i (E)-curve, obtained with increasing potentials as compared

with the i (E)-curve obtained with decreasing potentials, can be attributed

to a time effect due to impurity poisoning.

,i
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CoPt 3 (AuCu 3-type, L12 structure, formed by an ordering

reaction, heat-treated at 700°C for 66 hours in vacuum) (Fig. 32): There

is very little corrosion over the potential range tested. The compound " _,

exhibits good O2-reduction activity from 900 to 0 millivolts. The hysteresis

observed inthe activation control region may have the same origin as

suggested for TiPt3, but it can also be caused by corrosion and/or by lack

of Co 3+ oxide in the i(E)-curve obtained with increasing potential (see later

comments on Figs. 42a and b).

ZrPt 3 (TiNi 3, 13024 structure, congruen0 (Fig. 33):

Excessive corrosion may be due to accidental leaks. These measurements

will be repeated.

TaPd 3 (3 lsh stacking structure type, congruent). (Fig. 34):

This sample shows moderate corrosion in the range of interest, and high

activity for oxygen reduction. This activity is, in part, due to the very high

roughening caused by corrosion, as indicated by the double layer capacity

of C = 663 taf/cm 2.

TaPt 3 (TiCu3-type, DO a structure, congruent) (Figs. 35a

and b): Qualitatively, the results obtained in this new run (Fig. 35b) are the

same as previously reported (Fig. 35a), although the magnitude of the

current in the region of diffusion control is larger in Fig. 35a than in Fig. 35b.

Comparison of Fig. 30]o and Fig. 35b seems to confirm that the corrosion is

higher with TaPt 3 than with TaPt 2 as reported in the first quarterly report.

TiNi 3 (DO24 - structure, congruent) (Figs. 36a and b):

This compound was run again due to the suspicious nature of the peaks

obtained with first sample (Fig. 36a) which did not correspond even approxi-

mately to thermodynamic potentials of any possible electrode reaction. It

was felt that there may have been a crack through which the KOH solution was

making contact with the Connecting metal rod. A new sample was made,

and the results (Fig. 36b) show that there is little corrosion in KOH solution.

O2-reduction activity is limited to potentials below 400 my and is relatively

small.

- 17 -
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VPt 3 (3 lsh stacking structure, congruent) Fig. 37):

Corrosion is moderate, but considerable, especially in the potential region

of the O2-electrode. The activity for the O2-reduction is relatively good

in the i(E)-curve, taken with decreasing potentials. The large hysteresis

in the region of activation control seems to be due to corrosion, which is

due to passivation during the pre-heat-treatrnent at high potentials in the

i(E)-curve obtained with decreasing potentials.

ZrAu 3 (2 lsh stacking structure, congruent) (Fig. 38):

After repetition of the previous run, the results (Fig. 38b) are similartg

those published in the previous quarterly report (Fig. 38a), but with better

defined limiting current. Similarly, as found with pure gold, indications of
i

two steps are found in the region of diffusion control of Fig. 38b, which can

be attributed to the reduction of 02 in two distinct steps:

0

0 2 + H20 + 2e- --. HO 2 + OH-

HO 2 + H20 + 2e- -, 3OH-.

The undefined limiting current in Fig. 38a can be due to the same cause.

Corrosion is low; the activity, although high, is lower than that of pure

gold. ' -

6. AB 4 Stoichiometry

MoNi4 (Face centered tetragonal superstructure, peritectoid;

heat-treated at 700°C for 66 hours in vacuum) (Fig. 39): Corrosion is

moderate, but sizable, especially in the potential range of the O2-electrode;

activity is only high at potemials below E = 300 my.

7. Variable Stoichiometry

Ta'Ni (u-structure) (Fig. 40): This material has a corrosion

rate and O2-reduction activity very similar to NiA1 (Fig. 18). All indications

of activity for O2-reduction appear below 300 millivolts.

/
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TaV 2 (I) (bcc solid solution) Fig. 41): The corrosion

behavior for this sample is qualitatively the same as that of the ordered

species (Fig. 21). Quantitatively, it seems if the corrosion is higher for

the solid solution at low potentials and for the ordered structure at higher

potentials.

C. Solid Solutions .

Co2Ni (fcc solid solution) (Figs. 42a and b): This solid

solution has been selected because it can form a spinel oxide layer, NiCo20 4,

at the potential of the 0 2-electr6de (0. 8 v < E < 1.2 v). Figure 42a shows

that the corrosion rate of Co2Ni is small in the potential range of interest.

In addition, upon decreasing the potential from 1.2 volt to 0 volts in

-saturated solutions, ,appreciable activity for O2-reduction, starting at
2_ 0. 9 volt, is Observed. This activity decreases at potentials lower than

0.7 volts, probably due to reduction of the Co 3+ in the spine*l. After

reversing the potential sweep at 0 my, the current increases to diffusion

limited values at potentials lower than E - 400 mv due to substantial oxide

•reduction at the low potentials; however, no activity maximum is found in the

region of 600 mv to 800 mv,. probably becatise Co 3+ is not formed except at-, :,

higher potentials. A repeat of this experiment (Fig. 42b) shows an even

more pronounced qualitative difference between the zone of activity due to

Co 3+ (E = 900 mv to E- 600 my) and the zone due to a lower oxide

(E < 400 my). These experiments show the decisive effect of the composition

of the surface oxide on activity. (In parallel to experiments with oxide

powders, we plan to investigatethe effect of pre-oxidation of compact samples

of solid solutions of nickel and cobalt.

Pd-Ag Solid Solutions (fcc): Palladium-silver alloys have been

the object of investigation by several groups because of their excellent

properties as H2-permeable membranes. Since both constituents show good

oxygen activity, it was decided to study these alloys now as O2-reduction

catalysts. For this purpose, spheres of five different alloys mounted in an

electrode configuration like that of Fig. lb have been used. No clear difference

in behavior can be concluded from the curves of Figs. 43 to 47 (described

with more detail in the following). Further study with a more refined selection

of experimental conditions (such as avoiding H2-absorption , better control of

oxide formation, etc.) is planned.



t

30o/0 Pd-70°_ Ag (Fig. 43): This material shows no corrosion

and a fairly good O2-reduction activity below 850 millivolts. Since the _ '

sample is 70 percent silver, the cathodic current due to hydrogen absorption

in the palladium is extremely small.

50°7o Pd-50°_ AT (Fig. 44): There.is no appreciable corrosion;

however, below 150 rnillivolts, there is a cathodic current due to hydr4en

absorption as previous'ly discussed for pure Pd. The O2-reduction activity

is very good starting at 900 millivolts applied potential.
t

70°/o Pd-30°lo Ag (Fig. 45): There is a large cathodic current

below 200 millivolts, as expected for a sample which is largely palladium,

and very little, if any, corrosion. The 0 2 -reduction activity is moderate

below 850 millivolts, but the current seems to be smaller than expected;

therefore, this material will be rerun at a later date to verify the results.

80_ Pd-20°7o Ag (Fig. 46): On decreasing the potential in N 2-

saturated solutions, there is no apparent corrosion; below 300 millivolts,

there is the usual cathodic current; finally, on increasing the potential,

there is a pronounced anodic current due to the desorption of the hydrogen

and not to corrosion. The O2-reduction activity is fairly large, though

less than that of 507o Pd-50°//o Ag.

90Oio Pd-10o_ Ag (Fig. 47): This material,shows an expected

large cathodic current below 120 millivolts with a large O2-reduction

activity below 800 millivolts. The corrosion is negligible.

D. Interstitials/Substitutionals

Cr2B (CuAl-type, C16 structure, congruent) (Fig. 48): Corrosion

high above E = 0* 8 volt; no sizable activity for O2-reduction.

Ni2B (CuAl-type, C16 structure, congruent) (Fig. 49): Corrosion

resistance is good on :'anodized" surfaces (i.e. starting run at high potential;

1 to 1.2 volts); it is appreciable in the i(E)-curve taken w ith increasing

potentials, probably due to reduction of a protective oxide; and in general.
i

it is worse than for pur e nickel. Activity for O2-reducti0n is similar to

that of pure nickel.

,.+
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B4C (Rhombohedral type structure, based probably on a

group of three carbon atoms surrounded by clusters of twelve boron atoms)

(Fig. 50): Corrosion resistance is good; activity for O2-reduction is low.. [

VC (Complex cubic structure) (Fig. 51): This compound shows

corrosion at potentials higher than E = 850 my; below this potential there

is activity for O2-reduction.

Fe2C (Hang carbide, obtained by carburization of iron surface;

electrode mounted using assembly of Fig. lb) (Fig. 52): This sample shows

surprisingly high activity for O2-reduction (although lower than that of Pt,

Pd, Ag,and Au). Comparison with the results obtained with pure iron (Fig. 5)

shows a displacement of the oxygen i(E)-curve to more positive values by

approximately 100 my; at the same time the corrosion is smaller in."Fe2C"

than in pure iron. Since the double layer capacity of the "Fe2C" sample is
28 _f/cm 2 for iron, the increased activity cannot be explained in terms of

roughening. A more detailed study is necessary to ascertain the intrinsic

activity of the carbide and of the possible oxides.

ZrC. (NaC1 type, B1 structure) (Fig. 53): This material shows

no appreciable corrosion. Below 400 mv there is activity for oxygen

reduction without much hysteresis.

NbC (NaC1 type, B1 structur e) (Fig. 54): This material corrodes

at potential higher than 600 inv.. No activity for O2-reduction was determined.

Mo2C (W2C type, hexagonal cl0se-packed structure) (Fig. 55):

There is high corrosion at potentials higher than 200 my.
i

• i

HfC {NaC1 type, B1 structure) (Fig. 56): This material shows

an interesting corrosion passivation behavior at potentials between 500

and 750 my. There is clear activity for O2-reducti0n at potentials below
500 mv.

TaC (NaC1 type, B1 structure) (Fig. 57): The corrosion rate

is very high at potentials higher than E = 700 mv, without passivation. ,,: [:.

-21 -



Ni2P (Fe2P type, C22 structure) (Fig. 58): Reasonably

good corrosion resistance altlaough worse than pure nickel. There is no

activity for O2-reduction above 400 my.

E. Ternary S_stems

Co0.66Ni0. 33A1 (CsCl-type, B2 structure, congruent) (Fig, 59):

This material was selected in order to investigate if it is possible to combine _

the performance of the C'o2Ni solid solution and the stability for corrosion

of the NiA1 intermetal lic_ Unfortunately, the corrosion is large in the

whole potential range..
I
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F. Metallurgical Characterization of Intermetallic Compounds

The extent to which a particular electrode sample is actually

made up of a given intermetallic compound can be determined by metaUo"

graphic analysis. In many cases, a small amount of a second phase, either

a metallic solution or an intermetallic compound, may be present in a

particular sample, but the sample usually contains 90% or more of the com-

pound to be tested;

In metallographic preparation, the sample is ground flat through

a series of pi'ogressively finer SiC grit papers. It is then fine-polished

On Microcloth wheels using either diamond pastes or alumina slurries,

depending on the hardness of the particular compound, Next, the sample is

etched to delineate the actual metallographic structure.

Due to the large number of elements involved in the synthesis of

these intermetaUic compounds, there is no general etchant which is applicable

to all compounds. Instead, each compound must be treated separately, and a

suitable etchant must be found for each case. This is generally based upon

the elements in the compound, as well as the particular amount of each

metal in that compound.

Representativ e photomicrog_m phs of some of the intermetallic

compounds studied in this program are given below. A general description

of the compound, its etchatit, and its heat-treatment (if any) accompanies
0

each photomicrograph.

Of the eighteen samples shown below, only threo show any

significant amounts of second phase, namely Mo3Pt, ' Ni3B, and MoNi 4. The

reasons for the presence of the second phase are included with the description

of the particular photomicrograph. The remainder are almost all uniformly

single phase in nature. With proper melting procedure (so that there are no

significant weight lOsses) and adequate heat treatment times and temperatures

(for proper homogenization), single phase intermetallic 'compounds are

usually attained.
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AB2 Stoichiometry (From 1st Quarterly Report) 

, '  

Fig. 60 

Samde No. 572-25 

0 

150X. TaPt2 (c. p. orthorhombic phase) 

... 

Electrolytically etched i n  20% HC solution at approximately 
3v (a. c. source) with Pt electrode. 

The compound forms according to a congruent reaction. Due 
to small losses of Pt, a small amount of the compound TaPt 
has formed along the grain boundaries of TaPt2. 
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0 .  
AB3 Stoichiometry (From 1st Quarterly Report) 

Fig. 61 

Sample No. 572-3 1 

TiPtg (AuCug - type, L12 structure) 1OOX. 

Electrolytically etched in 20% HC1 solution at approximately 
3v (a.c. source) with Pt electrode. 

The compound forms according to a congruent reaction. 
Extremely small precipitate particles of TiPt a re  seen, 
possibly due-to some loss of Pt during melting. 

i' , 

I '  



AB3 Stoichiometry (F,rom 1st Quarterly Report) 

SampleNo. 572-29 , 

Fig. 62 

TaPtg (12 Ish stacking type; DOa structure) 1OOX. 

Electrolytically etched i n  a 20% HC1 solution at approximately 
3v (a.c. source) with Pt electrode. 

This compound forms according to a congruent reaction, and 
is entirely TaPtg. 
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AB3 Stoichiometry (From 1st Quarterly Report) 

Fig. 63 

Samr>le No. 572- 17 

NbNi3 (TiCu3 - type, orthorhombic structure) 50X. 

This photomicrograph was taken under polarized light, as 
chemical etching seemed ineffective. 

This compound forms according to a congruent reaction; and 
is entirely NbNi3 

I 
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AB3 Stoichiometry (From 1st Quarterly Report) 

Fig. 64 

Sample No. 572-21 ' 

TiNi3  (DO24 structure) 75X. 

Chemically etched in  15 parts HC1, 5 parts M F ,  5 parts HN03, 
and 15 parts glycerol. Photomicrograph taken under polarized 
light. 

This compound formed according to a congruent reaction. The 
sample is almost entirely T iNi3  , except' for minute'particles of 
TiNi,  or the Ni solid solution phase. 
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Interstitials (From 1st Quarterly Report) 
0' 

. 

Fig. 65 

Sample No. 572-30 

NigB (DOll structure) 250X. 

Chemically etched in 50 parts HC1, 5 parts HC1, and 25 parts 
HZO. \ 

During arc-melting, large losses of boron were noted. The 
resultant sample is therefore a two-phase alloy, consisting of 
primary dendrites of Ni3B, plus a eutectic mixture of Ni3B and 
Ni solid solution. 
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A3B Stoichiometry 

. .  

. 

i 

-- 

Fig. 66 

Sample No. 572-55 

Mo3R ( fi - W type, A15 structure) 85X. 

I' ' ,, 

Chemically etched in  5 grams CuS04, 10 cc NH40H, 20 cc H20. 

The fi -W-type compound, based on MogPt, actually forms 
peritectically a t  1650°C at approximately 16 atomic % Pt. This 
particular sample was made at  a composition of 25 atomic % Pt, 
and heat-treated in  vacuum at 1600°C for 40 hours. The actual 
sample consists of primary grains of the  /3 -W phase (Mo-16 atomic 

Pt), plus a mixture of the /3 -W and the epsilon (MOR) phases. 
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0 A2B Stoichiometry 

Fig. 67 

Sample No. 572-62 , 

Ti2Cu (Mbsi,’ - type, C11 b structure) 75X. 

Chemically etched i n  5 parts HNOQ, 5 parts HF, 40 parts H20. 

Ti2Cu forms peritectically a t  990°C. This sample was heat- 
treated in an evacuated quartz cylinder 
for 160 hours; it is virtually all Ti2Cu. 

mm Hg) at  800°C 

- 97 - 



Fig. 68 

Sample No. 572-61 ' 

TiCo (CsC1 type; Be structure) 1OOX. 

Chemically etched i n  10 parts "Os, 10 parts HF, 10 parts 
glycerin, and '1 part H20. 

The reaction according to which TiCoforms is not definitely 
known. This sample was heat-treated at  800°C for 160 hours 
in an evacuated quartz cylinder mm Hg). The small 
particles of second phase precipitate may be Ti2Co, due to a 
small weight loss of CO during arc-melting. 

I .  

0 
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I 

AB Stoichiometry 

I' , , 

Fig. 69 

Sample No. 572-59 

NiAl  (CsC1 type, B2 structure) 50X. 

Chemically etched in 25 parts HC1, 5 parts HN03, and 
10 parts H20. 

The compound forms according to a congruent reaction. The 
sample is entirely NiA1. 
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AB Stoichiometry 
0- 

Fig. 70 
SamDle No. 572-73 

CoAl (CoA1 &e, B2 structure) 75X. 

Chemically etched with 25 parts HCl, 10 parts H20, 
5 parts HN03, 1 part HAC. 

The compound is formed according to a congruent reaction. 
The sample is entirely CoA1. 

I 
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AB Stoichiometry 
I 

... 

Fig. 71 

Sample No. 572-38 

MOR (Hexagonal close-packed structure) 1OOX. 

Electrolytically etched in 20% HC1 solution at approximately 
3v (a.c. source) with Pt electrode. 

The compound forms according to a congruent reaction. The 
sample is entirely MOR. 
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AB3 Stoichiometry 

Fig. 72 

Samde No. 572-48 

Copt3 (AuCu3 type, L12 structure) 50X. 

Electrolytically etched in  20% HCl solution at  approximately 
3v (a.c. source) with €3 electrode. 

This compound forms according to an ordering reaction at 750°C 
from the Co-Pt solid solution of this composition. A f t e r  melting, 
the sample was heat-treated at  70O0C, 66 hours, in  an evacuated 
quartz cylinder (lo+ mm Hg). The sample is entirely Copt3. 
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ABn, n > 3 Stoichiometry 

Fig. 73 

Sample No. 572-49 ' 

MoNi4 (Face - centered tetragonal superstructure) 200X. 

Chemically etched. 

The compound forms according to a peritectoid reaction at  
840°C. The melted sample was heat-treated in an evacuated 
quartz cylinder (lo-' mm Hg) at  700°C for 66 hours. The 
heat-treatment was insufficient to transform the as  -melted 
material entirely to the actual compound, and the sample is 
most likely a mixture of MoNiq and Mo solid solution. 
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Solid Solutions I 
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~ - . . I 

Fig. 74 

Sample No. 572-44 

Ta - 66.7 atomic V (T'aV,) 50 X 

Chemically etched with 10 parts HF, 10 parts "Os,  20 parts glycerin. 

A t  elevated temperatures, Ta and V form a complete series of 
solid solution alloys. A t  the composition TaV2, the alloy orders 
below 1320°C to form a compound with a Laves phase (MgCu2-type) 
structure. The above photomicrograph shows that particular com- 
position in its solid solution state. 
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Solid Solution 

Fig. 75 

Sample No. 572-33 

Co - 33.3 atomic % Ni (Co2Ni) SOX. 

Chemically etched. 

Co and N i  form a complete series of solid solution alloys. 
This sample is an alloy corresponding to the composition 
66.7 atomic % Co, 33.3 atomic % Ni. 

* 
I '  
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0 '  Interstitials , 

Fig. 76. 

SamDle No. 572-39 

Ni2B (CuA12 type, C16 structure) 1oOX. 

I 
i 

Chemically etched with 50 parts HC1, 5 parts HN03, 
25 parts H20. 

The compound is formed according to a congruent reaction. 
The sample is primarily Ni2B with some small amounts of 
Ni B at  the grain boundaries due to boron loss during melting. 3 



. 
- 

a Ternary compound 
AB Stoichiometry 

Fig. 77' 

Sample No. 572-72 

('O. 67Ni. 33 )A1 (CsC1 type, B2 structure) 75X. 

Chemically etched with 5 parts HN03, 25 parts HC1, 1 parts 
HAC, 10 parts H20. 

This compound is based upon CoAl and NiAl which a re  mutually 
soluble in one another, i. e., Co and Ni can readily substitute 
for one another. No second phase was present in the sample. 
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V. GENERAL DISCUSSION

A detailed discussion has accompanied each test. Of the tested
. ,

elements, Pd shows verygood 0 2 activity, only slightly inferior to Pt

(around 75 mv more polarization in the non-steady state i(E)-curve).

Graphite shows relatively good intrinsic activity ({vith 0 2 current at

E == 800 my); and iron With O2-reduction at E = 600 my is surprisingly

more active than nickel i

The experiments with the intermetallic compounds show that under

conditions of O2-reduction, the fundamental factor determining the activity

is the atomic factor. Thus, compounds of Pt and Au show an i(E)-curve

for O2-reduction which is similar (but with "diluted" activity) to those of

pure Pt and Au. In some cases such as TaPt 2, the activity of the inter-

metallic compound is very close to the activity of pure Pt.

The solid solution, "Co2Ni" shows a very interesting behavior which

confirms the catalytic activity of Co 3+ containing oxide and the poor activity

of the bivalent oxide.

Of the interstitials tested, carbides show activity, especially an

iron carbide (Hag carbide Fe2C) prepared by surface carburization (with

CO) of an iron rod at several temperatures not exceeding 300°C, which

shows activity for O2-reduction which, lower than that of Pt, Pd, Ag and Au,

but considerably better than the activity of Fe.

° i

tl,
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VI. FUTURE WORK

1. Preparation and testing of carbides, nitrides, and carbonitrides

of Fe, Co, Ni both as high dispersed material and as compact materials

(surface layers on pure metals).

2. Testing as ,"floating electrodes" Pt-_feflon-electrodes (as [
J

standards) and electrodes obtained from highly dispersed catalysts (carbides, •

carbonitrides, etc.; Pd-Au-"blacks", etc.).

3. Testing of Compact samples of borides, silicides, and nitrides

obtained from Cerac.

4. Testing of compact samples of Pt-Au (ten compositions);

Pd-Au (ten compositions); and Ag-Au (ten compositions).

Fe304.

5. Testing of compact oxides. (NiO doped with Li) NiO Co203,
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